A Statistical Adjustment of Regional Climate Model Outputs to Local Scales: Application to Platja de Palma, Spain

نویسندگان

  • A. AMENGUAL
  • R. ROMERO
  • S. ALONSO
چکیده

Projections of climate change effects for the System of Platja de Palma (SPdP) are derived using a novel statistical technique. Socioeconomic activities developed in this settlement are very closely linked to its climate. Any planning for socioeconomic opportunities in the midand long term must take into account the possible effects of climate change. To this aim, daily observed series of minimum and maximum temperatures, precipitation, relative humidity, cloud cover, and wind speed have been analyzed. For the climate projections, daily data generated by an ensemble of regional climate models (RCMs) have been used. To properly use RCM data at local scale, a quantile–quantile adjustment has been applied to the simulated regional projections. The method is based on detecting changes in the cumulative distribution functions between the recent past and successive time slices of the simulated climate and applying these, after calibration, to the recent past (observed) series. Results show an overall improvement in reproducing the present climate baseline when using calibrated series instead of raw RCM outputs, although the correction does not result in such clear improvement when dealing with very extreme rainfalls. Next, the corrected series are analyzed to quantify the climate change signal. An increase of the annual means for temperatures together with a decrease for the remaining variables is projected throughout the twenty-first century. Increases in weak and intense daily rainfalls and in high extremes for daily maximum temperature can also be expected. With this information at hand, the experts planning the future of SPdP can respond more effectively to the problem of local adaptation to climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling

Climate projections simulated by Global Climate Models (GCMs) are often used for assessing the impacts of climate change. However, the relatively coarse resolutions of GCM outputs often preclude their application to accurately assessing the effects of climate change on finer regional-scale phenomena. Downscaling of climate variables from coarser to finer regional scales using statistical method...

متن کامل

Climate change scenarios generated by using GCM outputs and statistical downscaling in an arid region

Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...

متن کامل

بـررسی پتـانسیل اثـرات تغییر اقلیـم بر خشکسـالی‌های‌ آینـده کشـور با استفـاده از خروجی مـدل‌های گـردش عمـومی جـو

A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global Circulation Models as Outputs Gholamreza Roshan Assistant Professor in climatology, Department of Geography, Golestan University, Gorgan, Iran Mohammad Saeed Najafi  MSc Student in Climatology, Faculty of Geography, Tehran University, Tehran, Iran. Extended Abstract 1- Introductio...

متن کامل

RANDOM FUZZY SETS: A MATHEMATICAL TOOL TO DEVELOP STATISTICAL FUZZY DATA ANALYSIS

Data obtained in association with many real-life random experiments from different fields cannot be perfectly/exactly quantified.hspace{.1cm}Often the underlying imprecision can be suitably described in terms of fuzzy numbers/\values. For these random experiments, the scale of fuzzy numbers/values enables to capture more variability and subjectivity than that of categorical data, and more accur...

متن کامل

A synoptic-climatology approach to increase the skill of numerical weather predictions over Iran

Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012